Synthesis of novel azo compounds containing 5(4H)-oxazolone ring as potent tyrosinase inhibitors

Hooshang Hamidiana,⇑, Roya Tagizadeh a, Samieh Fozoonib, Vahid Abbasalipour a, Ali Taheri c, Mohadeseh Namjoud d

a Department of Chemistry, Payame Noor University (PNU), PO Box 19395-3697, Tehran, Iran
b Mining Engineering Department, Zarand High Education Center, Shahid Bahonar University, Kerman, Iran
c School of Advance Medical Science, Golestan University of Medical Science, Gorgan, Iran
d Department of Medical Laboratory, Golestan University of Medical Science, Gorgan, Iran

Article info
Article history:
Received 30 October 2012
Revised 28 December 2012
Accepted 5 January 2013
Available online 16 January 2013

Keywords:
Anti-tyrosinase effect
Diazotization
5(4H)-Oxazolones
Azo compounds

1. Introduction

Tyrosinase (monophenol or o-diphenol, oxygen oxidoreductase, EC 1.14.18.1, syn. polyphenol oxidase), also known as polyphenol oxidase (PPO), is a copper-containing monooxygenase that is widely distributed in microorganisms, animals, and plants.1 Tyrosinase inhibitors are clinically useful for the treatment of skin diseases associated with melanin hyperpigmentation and applied in cosmetics for whitening and depigmentation after sunburn.2 Melanin is a heteropolymer of indole compounds and is produced inside melanosomes by the action of the tyrosinase enzyme on the tyrosinase precursor material in melanocytes. It has recently been discovered that some other factors such as metal ions and the TRP-1 and TRP-2 enzymes also contribute to the production of melanin. However, tyrosinase plays a critical role in the regulation of melanin biosynthesis. Therefore, many tyrosinase inhibitors that suppress melanogenesis have been widely studied with the aim of developing preparations for the treatment of hyperpigmentation.3–7

Nitrogen heterocycles are of special interest because they constitute an important class of natural and nonnatural products, many of which exhibit useful biological activities. Oxazolone derivatives are in general well-known five-membered nitrogen-containing heterocyclic compounds. 4-Arylidene-2-phenyl-5(4H)-oxazolones are important intermediates for the synthesis of fine chemicals and precursors of several biologically active molecules such as amino acids and peptides.8

On the other hand, oxazolone derivatives are highly versatile intermediates used for the synthesis of several organic molecules, including amino acids, peptides, antimicrobial or antitumor compounds, immunomodulators, heterocyclic precursors for biosensors coupling, and photosensitive composition devices for proteins.9–11

It is well known that azo compounds are the widest class of industrial synthesized organic dyes due to their versatile application in various fields, such as dyeing textile fiber, biological–pharmacological activities and advanced application in organic synthesis.12–16

In recent years, the fabrication of azo dyes has been intensively investigated, due to their unique industrial applications in hypnotic drugs,17 in living cells, in detecting cancer18 and having pharmacological and biological activities.19–22

In this work, we synthesized a number of new azo compounds containing of oxazolone ring and studied chemical structures. Also we evaluated inhibitory effect on tyrosinase of new compounds.

2. Results and discussion

2.1. Chemistry

Diazonium salts could react readily with nucleophiles as an aromatic compounds containing amino or hydroxyl group, which have
been extensively researched and widely used for the preparation of molecules with significance for both academic and industrial applications. 4-Amino hippuric acid is dissolved in a 2.5% sodium carbonate solution by heating and stirring. In the solution of 4-amino hippuric acid, sodium nitrite is dissolved and 4-amino hippuric acid was diazotized by slow addition of concd HCl at 0°C. A yellow precipitate of the diazonium salt was formed (Scheme 1).

Coupling components (N,N-dimethylaniline, 1-naphthol and 2-naphthol) are added to diazonium salt of 4-aminohippuric acid. Azo dyes (3a–3c) are produced in good yields. Diazonium salt is coupled to the para-position of the amine group, 2-position of hydroxyl group in 1-naphthol and 1-position of hydroxyl group in 2-naphthol (Scheme 2).

Then 4-arylidene-5(4H)-oxazolone azo dyes (4a–4f) are synthesized by classical Erlenmeyer reaction, involving condensation of compounds (3a–3c) with 4-fluorobenzaldehyde and 4-trifluoromethoxy benzaldehyde in presence of acetic anhydride and sodium acetate under refluxing condition at 100°C for 3 h (Scheme 3).

Generally, variation in color of these dyes results from the alteration in coupling components. Since the synthesized dyes obtained varied in color from red to brown, a convenient method of measuring the color of the compound was to study the absorption spectra of their solutions. The visible absorption maxima for the synthesized dyes were measured in Me2SO at the concentration of 10⁻⁵ M and are listed in Table 1.

The absorption maxima of the synthesized dyes changed from 496 to 542 nm. Compounds (4a–4f) are stable solids whose structures were established by IR, ¹H NMR spectroscopy, mass spectrometry and elemental analysis.

2.2. Inhibitory activity of tyrosinase

The compounds (4a–4f) demonstrated excellent in vitro tyrosinase inhibitory properties having IC₅₀ values in the range of 4.33 ± 0.52 to 1.44 ± 0.36 μM, whereas standard inhibitors, l-mimosine and kojic acid, have IC₅₀ values 3.68 ± 0.02 and 16.67 ± 0.52 μM, respectively (Table 2 and Fig. 1). Compounds (4a) and (4b) having IC₅₀ values 2.01 ± 0.39 and 1.44 ± 0.36, respectively, were found to be very active members of the series, even better than both the standard inhibitors. However, compounds (4c), (4d) and (4e) were found better than the standard kojic acid but not l-mimosine. 2-(4-{{2-[4-(Dimethylamino)phenyl]-1-diazenyl}phenyl}-4-(trifluoromethoxy)phenyl)[methyldene]-1,3-oxazol-5-one (4b) was found to be the most active one having IC₅₀ = 1.44 ± 0.36 μM among all tested compounds.

Comparing the activities with the structures of compounds, it turns out that the tyrosinase activity is mainly dependent on the substituents present at C-2 and C-4 positions of oxazolone ring. When tyrosinase inhibitory activity of the most active compound (4b) was compared with other compounds, it was observed that it has a 4-(trifluoromethoxy) phenyl group on the aliphatic double bond at C-4 and 4-[dimethylamino]phenyl]-1-diazenylphenyl group at C-2. This shows that extension of conjugation through an aliphatic double bond could be the prerequisite for activity rather than extension through an aromatic ring.

A decrease in the activity of compounds (4a), (4c) and (4e) as compared to compounds (4b), (4d) and (4f) was due to the change in the substituent in phenyl ring present at C-4 of oxazolone ring. The least activity of compound (4c) (IC₅₀ 4.33 ± 0.52 μM) may be

![Scheme 1. Diazotisation of 4-aminohippuric acid.](image1)

![Scheme 2. Coupling of diazonium salt with aromatic compounds.](image2)

![Scheme 3. Synthesis of fluoro 5(4H)-oxazolone azo dyes (4a–4f).](image3)
due to changing the substituent in phenyl rings present at C-4 and aromatic ring at C-2. Compound (4b) ([IC50 1.44 ± 0.36 μM]) was found to be highly active member of the present series of azo compounds. Its excellent activity may be due to the presence of dimethylamino group in phenyl ring at C-2 and the presence of a trifluoromethoxy group in phenyl ring at C-4, which meets the criteria for achieving extension of conjugation. Compound (4a) ([IC50 2.01 ± 0.39 μM]) is structurally similar to compound (4b) except where trifluoromethoxy group is replaced by fluoro. Interestingly, compounds (4c-4f) having IC50 values 4.33 ± 0.52, 3.98 ± 0.16, 3.91 ± 0.24 and 3.04 ± 0.31 μM, respectively, showed good activity. The activities may be due to the presence of electron-withdrawing substituent on phenyl ring at C-4 and electron-donating substituent on aromatic ring at C-2.

Effect of the compound 4b on tyrosinase tertiary structure was considered by measurements of intrinsic fluorescence. We found that 4b had a quenching effect on the intrinsic fluorescence, which gradually occurred with increasing concentration.

Table 1
Structure, yields and λmax of new 5(4H)-oxazolone azo dyes (4a-4f)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>λmax (Me2SO)</th>
<th>Yield* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H₂C-</td>
<td>CH₃</td>
<td>4a</td>
<td>501</td>
</tr>
<tr>
<td>2</td>
<td>H₂C-</td>
<td>CH₃</td>
<td>4b</td>
<td>542</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4c</td>
<td>534</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4d</td>
<td>517</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>4e</td>
<td>515</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>4f</td>
<td>510</td>
</tr>
</tbody>
</table>

* Isolated yields.

Table 2
Tyrosinase inhibitory activities of the compounds (4a-4f), as compared to the standard inhibitors

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>IC50 ± SEMa (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4a</td>
<td>2.01 ± 0.39</td>
</tr>
<tr>
<td>2</td>
<td>4b</td>
<td>1.44 ± 0.36</td>
</tr>
<tr>
<td>3</td>
<td>4c</td>
<td>4.33 ± 0.52</td>
</tr>
<tr>
<td>4</td>
<td>4d</td>
<td>3.98 ± 0.16</td>
</tr>
<tr>
<td>5</td>
<td>4e</td>
<td>3.91 ± 0.24</td>
</tr>
<tr>
<td>6</td>
<td>4f</td>
<td>3.04 ± 0.31</td>
</tr>
<tr>
<td>7</td>
<td>Kojic acidb</td>
<td>16.67 ± 0.52</td>
</tr>
<tr>
<td>8</td>
<td>L-Mimosineb</td>
<td>3.68 ± 0.02</td>
</tr>
</tbody>
</table>

* SEM is the standard error of the mean.

b Standard inhibitors of the enzyme tyrosinase.

Figure 1. Comparative graphical presentation of the tyrosinase inhibitory potentials of the compounds (4a-4f).
Table 3
Melanin production and cytotoxicity

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Melanin production inhibition (%)</th>
<th>Cytotoxicity cell viability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4a</td>
<td>35.70 ± 4.09</td>
<td>71.90 ± 2.87</td>
</tr>
<tr>
<td>2</td>
<td>4b</td>
<td>34.33 ± 3.21</td>
<td>67.26 ± 3.22</td>
</tr>
<tr>
<td>3</td>
<td>4c</td>
<td>31.31 ± 1.87</td>
<td>72.13 ± 1.33</td>
</tr>
<tr>
<td>4</td>
<td>4d</td>
<td>33.42 ± 1.48</td>
<td>73.52 ± 2.44</td>
</tr>
<tr>
<td>5</td>
<td>4e</td>
<td>32.50 ± 1.39</td>
<td>66.66 ± 5.31</td>
</tr>
<tr>
<td>6</td>
<td>4f</td>
<td>35.63 ± 0.74</td>
<td>68.71 ± 2.73</td>
</tr>
<tr>
<td>7</td>
<td>Kojic acid<sup>a</sup></td>
<td>17.20 ± 1.22<sup>b</sup></td>
<td>81.04 ± 1.23<sup>b</sup></td>
</tr>
</tbody>
</table>

^a Standard inhibitors of the enzyme tyrosinase.
^b Tested at 200 µg/ml.

2.3. Melanin production inhibition and cytotoxicity

The inhibitory of the compounds (4a–4f) were also tested on melanin production and their cytotoxicity on B16F10 mouse melanoma cells at concentrations of 20 µg/mL. The results of melanin production inhibition and cytotoxicity by the compounds (4a–4f) are showed in Table 3. Compounds 4a–4f prevented melanin production by 35.7%, 34.3%, 31.3%, 33.4%, 32.5% and 35.6%, respectively, at concentrations of 20 µg/mL. On the other hand, compounds (4a–4f) have shown moderate inhibition of melanin production. Cytotoxicity of new compounds (4a–4f) evaluated and was defined that all compounds were relatively less toxic (Table 3).

3. Experimental

3.1. General

All the chemicals were obtained from Merck, Fluka, Sigma and Aldrich Companies and used without further purification. Melting points were measured using Thermo Fisher Scientific. IR spectra were recorded Bruker tensor 27, FT-IR Spectrophotometer. All¹ H NMR spectra were recorded on a Bruker 400 MHz Spectrophotometer. Chemical shifts are reported in parts per million (ppm) using tetramethylsilane (TMS) as an internal standard. Ultraviolet–visible (UV–vis) absorption spectra were recorded on an Perkin–Elmer spectrophotometer. The microanalyses for C, H and N were performed on Perkin–Elmer elemental analyzer.

The fluorescence emission spectra were determined with a RF-5301PC Shimadzu spectrophotometer using a cuvette with a 1 cm path length. An excitation wave length of 280 nm was used for the tryptophan fluorescence measurements, and the emission wavelength ranged between 300 and 420 nm.

3.2. Preparation of diazonium salt of 4-aminohippuric acid (2)

In a 125-mL Erlenmeyer flask, 4-aminohippuric acid (0.01 mol) was added to 2% sodium carbonate solution (30 mL) until it was dissolved by boiling. The solution was then cooled and sodium nitrite (0.01 mol) was added, with stirring, until it was dissolved. The solution was cooled by placing it in an ice bath, and then concentrated hydrochloric acid (2 mL) and water (3 mL) were added. By acidifying the solution, a powdery yellow precipitate of the diazo compound was obtained from water. Orange powder, decomposed >270 yield is 81%. IR (KBr): v = 3354, 1716 cm^{−1}.¹ H NMR (400 MHz, DMSO-d₆): 3.07 (s, 6H, 2CH3), 3.61 (d, 2H, J 4.4 Hz, CH2), 6.84 (d, 2H, J 8.9 Hz, ArH), 7.80–7.82 (m, 4H, ArH), 7.92 (br, 1H, NH), 7.98 (d, 2H, J 8.5, ArH) ppm. C9H5ONa2Na3 (348)Calcd C 58.54, H 4.92, N 16.18.19

3.3. Sodium 2-[4-(1-[4-(trifluoromethoxy)phenyl]methylidene)-1,3-oxazol-5-one (4a)

Dark red powder; mp: 264–266 °C. IR (KBr) v: 1794, 1655 cm^{−1}.¹ H NMR (DMSO-d₆, 400 MHz): δ 3.15 (s, 6H), 6.78–8.30 (m, 13H), MS (EI) m/z (%): 42(100), 76(7), 104(2), 120(6), 171(4), 247(10), 275(6). Anal. Calcd for C24H19N4O2F: C, 69.57; H, 4.59; N, 13.53. Found: C, 69.66; H, 4.39; N, 13.71.

3.4. Sodium 2-(4-[2-(1-hydroxy-2-naphthyl)-1-diazenyl]benzoyl]amino) acetate (3b)

1-Naphthol (0.01 mol) was dissolved in 5% sodium hydroxide solution (30 mL). The solution of 2-naphthol was added to suspension of dinitroazotized hippuric acid, with stirring, and base-stable form of the dye was separated. A stiff paste was formed in 5–10 min and then 10 mL acetic acid 10% was added to produce the red sodium salt. The product was collected using saturated sodium chloride solution. The crude product was crystallized from water. The crude product was crystallized from water. Red powder, decomposed >236 yield is 81%. IR (KBr): v = 3409, 3364, 1714 cm^{−1}.¹ H NMR (400 MHz, DMSO-d₆): 3.61 (d, 2H, J 4.4 Hz, CH2), 6.88–8.63 (m, 12H, ArH, NH, OH) ppm. C19H14N3O4Na (371) Calcd C 61.46, H 3.77, N 11.32. Found: C 61.73, H 3.66, N 11.09.

3.5. Sodium 2-(4-[2-(2-hydroxy-1-naphthyl)-1-diazenyl]benzoyl]amino) acetate (3c)

2-Naphthol (0.01 mol) was dissolved in 5% sodium hydroxide solution (30 mL). The solution of 2-naphthol was added to suspension of dinitroazotized hippuric acid, with stirring, and base-stable form of the dye was separated. A stiff paste was formed in 5–10 min and then 10 mL acetic acid 10% was added to produce the red sodium salt. The product was collected using saturated sodium chloride solution. The crude product was crystallized from water. Red powder, decomposed >259 yield is 81%. IR (KBr): v = 3477, 3355, 1710 cm^{−1}.¹ H NMR (400 MHz, DMSO-d₆): 3.64 (d, 2H, J 4.4 Hz, CH2), 6.90–8.89 (m, 12H, ArH, NH, OH) ppm. C19H14N3O4Na (371) Calcd C 58.54, H 4.92, N 16.18.

3.6. General procedure for synthesis of compounds (4a–4f)

A mixture of anhydrous sodium acetate (0.01 mol), 4-fluoro benzaldehyde or 4-trifluoromethoxy benzaldehyde (0.01 mol), sodium salt of azo dye (3a–3c) (0.01 mol) and acetic anhydride (40 mL) was heated with stirring until the mixture is transformed from an orange semi-solid mass to a deep red liquid (2–4 h). After cooling, the precipitated product was filtered and recrystallized in toluene.

3.6.1. 2-[4-[2-[4-(Dimethylamino)phenyl]-1-diazenyl]phenyl]-4-[4-(fluorophenyl)methylidene]-1,3-oxazol-5-one (4a)

Dark red powder; mp: 264–266 °C. IR (KBr) v: 1789, 1657 cm^{−1}.¹ H NMR (DMSO-d₆, 400 MHz): δ 3.15 (s, 6H), 6.78–8.30 (m, 13H), MS (EI) m/z (%): 42(100), 76(7), 104(2), 120(6), 171(4), 247(10), 275(6). Anal. Calcd for C24H19N4O2F: C, 69.57; H, 4.59; N, 13.53. Found: C, 69.66; H, 4.39; N, 13.71.

3.6.2. 2-[4-[2-[4-(Dimethylamino)phenyl]-1-diazenyl]phenyl]-4-[4-(trifluoromethoxy)phenyl)methylidene]-1,3-oxazol-5-one (4b)

Brown powder; mp: 248–250 °C. IR (KBr) v: 1794, 1655 cm^{−1}.¹ H NMR (DMSO-d₆, 400 MHz): δ 3.14 (s, 6H), 6.77–8.30 (m, 13H), MS (EI) m/z (%): 42(3), 76(17), 104(9), 119(100), 148(17), 224(3), 257(6). Anal. Calcd for C24H19N4O2F3: C, 69.57; H, 4.59; N, 13.53. Found: C, 69.66; H, 4.39; N, 13.71.
acid and l-mimosine was used as reference standard inhibitors for comparison.

3.7.2. Inhibition of melanin production
Melanin production inhibition was ascertained by method of Wang et al. A total of 8 × 10^4 cells were added to 60 mm plates, and were incubated at 37 °C in a CO₂ incubator then 10 μl test samples in DMSO were added to plates and were incubated for 72 h at 37 °C in a CO₂ incubator. After washing with PBS, cells were destroyed with 1 ml of 1 N NaOH, and 200 μl portions of raw cell extracts were moved to 96-well plates. Melanin production inhibition was determined by recording absorbance at 475 nm. The effects of test samples on melanin contents are stated as percent inhibition of the value obtained in B16F10 mouse melanoma cells which were cultured with DMSO alone.

3.7.3. Cytotoxicity assay
Cytotoxicity assays were performed using a micro-culture MTT method described by Han et al. A B16F10 mouse melanoma cell suspension was poured into a 96-well plate (10^3 cells/well) and cells were allowed to completely stick to each other overnight. Test samples were then added to the plate and were incubated at 37 °C for 72 h in a CO₂ incubator. 20 μl of MTT solution (2 mg/ml) was then added per well and incubated for 4 h. Supernatant was then removed and formazan was solubilized by adding 150 μl DMSO to each well with mild shaking. Absorbance at 490 nm was recorded using an ELISA plate reader.

Acknowledgment
The authors thank Payame Noor University (PNU) of Kerman for the financial support.

References and notes